苹果软件-免费软件站-雷霆加器速-easylink加速器2025年

Nearly every tissue in the body needs a blood supply, and that demand is met by a network of interconnected blood vessels called the microcirculation. The microcirculation is a highly adaptable system of small blood vessels that are a tenth of the diameter of a human hair–-you need a microscope to see them–-and there are over a million microvessels in a single gram of tissue. Microvascular growth and remodeling are important processes in nearly every major disease, including diabetes, heart disease, peripheral vascular disease, stroke, neurodegenerative diseases, and cancer. In our lab, we develop and use experimental and computational techniques to study and design new approaches for growing and regenerating injured and diseased tissues by manipulating the structure and composition of the microvasculature.

苹果软件-免费软件站-雷霆加器速-easylink加速器2025年

苹果软件-免费软件站-雷霆加器速-easylink加速器2025年

Amongst Medical and Biological Engineering Elite
02.23.2016
DETAILS
New $2.5M Collaborative NIH Grant Awarded
02.23.2017 
DETAILS
Pioneering Agent-Based Modeling
04.19.2016
DETAILS

苹果软件-免费软件站-雷霆加器速-easylink加速器2025年

With the recent acquisition of two state-of-the-art 3D-bioprinters, we have begun to explore how 3D-printing technology can be used to produce engineered tissues for use as model systems for studying disease and for generating implantable tissue constructs. Our current 3D-bioprinting projects involve collaborations with biomaterials experts at UVA in Chemical Engineering and make use of cutting-edge polymers for oxygen sensing developed by the Fraser Lab in the Dept. of Chemistry. Current work is focused on printing mini-pancreas tissue chips and skeletal muscle. These studies have been fueled by funds from the Jefferson Trust and have seeded a brand new "Center for Advanced Biomanufacturing" at UVA, with BME collaborator, Dr. George Christ. 

We use a parallel approach that combines experimental models with agent-based computational models to guide the development of new methods in tissue engineering and regenerative medicine. We are particularly interested in the microcirculatory system and how microvascular networks structurally adapt, through active growth and remodeling in health and disease. Our research is relevant to a variety of medical problems including heart disease, peripheral limb ischemia, wound healing, cancer and diabetes.

Learn More
Learn More

国内ipad怎么看youtube

Department of Biomedical Engineering

University of Virginia

苹果软件-免费软件站-雷霆加器速-easylink加速器2025年

  • mac怎么上youtube
  • 国内ios如何使用youtube
  • Grey Google+ Icon
  • 苹果怎么看youtube
  • 苹果用什么翻墙上youtube
佛跳加速器app官方下载2025免费  2025谷歌账号  光粒加速器官网网址,光粒加速器ios下载,光粒加速器vnp,光粒加速器2025年  飞速加速器破解版,飞速加速器跑路了,飞速加速器打不开,飞速加速器2025  考拉加速器官网,考拉加速器电脑版下载,考拉加速器vqn,考拉加速器2025  鲸鱼加速器最新版,鲸鱼加速器电脑版下载,鲸鱼加速器2025年,鲸鱼加速器vqn  拇指猴跑路了,拇指猴打不开,拇指猴2025,拇指猴vqn  91加速器官网,91加速器官网网址,91加速器官方网址,91加速器2025